
SANDIA REPORT
SAND2016-5338
Unlimited Release
Printed June 2016

Ifpack2 User’s Guide 1.0
(Trilinos version 12.6)

Andrey Prokopenko, Christopher M. Siefert, Jonathan J. Hu,
Mark Hoemmen, Alicia Klinvex

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

D
E

P
A

R
T

M
ENT OF EN

E
R

G
Y

•
 •
U
N

I
T

E
D

STATES OF
A

M

E
R

I
C

A

2

SAND2016-5338
Unlimited Release
Printed June 2016

Ifpack2 User’s Guide 1.0
(Trilinos version 12.6)

Andrey Prokopenko
Scalable Algorithms

Sandia National Laboratories
Mailstop 1318
P.O. Box 5800

Albuquerque, NM 87185-1318
aprokop@sandia.gov

Christopher Siefert
Computational Math & Algorithms

Sandia National Laboratories
Mailstop 1318
P.O. Box 5800

Albuquerque, NM 87185-1318

Jonathan J. Hu
Scalable Algorithms

Sandia National Laboratories
Mailstop 9159
P.O. Box 0969

Livermore, CA 94551-0969
jhu@sandia.gov

Mark Hoemmen
Scalable Algorithms

Sandia National Laboratories
Mailstop 1320
P.O. Box 5800

Albuquerque, NM 87185-1318
mhoemme@sandia.gov

Alicia Klinvex
Scalable Algorithms

Sandia National Laboratories
Mailstop 1320
P.O. Box 5800

Albuquerque, NM 87185-1318
amklinv@sandia.gov

3

Abstract

This is the definitive user manual for the IFPACK2 package in the Trilinos project. IFPACK2 pro-
vides implementations of iterative algorithms (e.g., Jacobi, SOR, additive Schwarz) and processor-
based incomplete factorizations. IFPACK2 is part of the Trilinos TPETRA solver stack, is templated
on index, scalar, and node types, and leverages node-level parallelism indirectly through its use of
TPETRA kernels. IFPACK2 can be used to solve to matrix systems with greater than 2 billion rows
(using 64-bit indices). Any options not documented in this manual should be considered strictly
experimental.

4

Acknowledgment

Many people have helped develop IFPACK2, and we would like to acknowledge their contribu-
tions here: Ross Bartlett, Tom Benson, Erik Boman, Joshua Booth, Julian Cortial, Kevin Deweese,
Jeremie Gaidamour, Paul Lin, Travis Fisher, Sarah Osborn, Eric Phipps, and Paul Tsuji. Finally,
Alan Williams did the original port from IFPACK and was the original lead developer of IFPACK2.

5

6

Contents

1 Getting Started 11

1.1 Overview of IFPACK2 . 11

1.2 Configuration and Build . 12

1.2.1 Dependencies . 12

1.2.2 Configuration . 13

1.3 Interface to IFPACK2 methods . 13

1.4 Example: IFPACK2 preconditioner within BELOS . 14

2 IFPACK2 options 17

2.1 Point relaxation . 17

2.2 Block relaxation . 19

2.3 Chebyshev . 21

2.4 Incomplete factorizations . 23

2.4.1 ILU(k) . 23

2.4.2 ILUT . 24

2.4.3 ILUTP . 24

2.5 Additive Schwarz . 25

2.6 Hiptmair . 28

References 30

Appendix

7

List of Figures

8

List of Tables

1.1 IFPACK2’s required and optional dependencies, subdivided by whether a depen-
dency is that of the IFPACK2 library itself (Library), or of some IFPACK2 test
(Testing). 12

2.1 Conventions for option types that depend on templates. 17

2.2 Combine mode descriptions. 26

2.3 Additive Schwarz solver preconditioner types. 26

9

10

Chapter 1

Getting Started

This section is meant to get you using IFPACK2 as quickly as possible. §1.1 gives a brief
overview of IFPACK2. §1.2 lists IFPACK2’s dependencies on other TRILINOS libraries and pro-
vides a sample cmake configuration line. Finally, some examples of code are given in §1.4.

1.1 Overview of IFPACK2

IFPACK2 is a C++ linear solver library in the TRILINOS project [6]. It originally began as
a migration of IFPACK package capabilities to a new linear algebra stack. While it retains some
commonalities with the original package, it has since diverged significantly from it and should be
treated as completely independent package.

IFPACK2 only works with TPETRA [8] matrix, vector, and map types. Like TPETRA, it allows
for different ordinal (index) and scalar types. IFPACK2 was designed to be efficient on a wide range
of computer architectures, from workstations to supercomputers [10]. It relies on the “MPI+X”
principle, where “X” can be threading or CUDA. The “X” portion, node-level parallelism, is
controlled by a node template type. Users should refer to TPETRA’s documentation for information
about node and device types.

IFPACK2 provides a number of different solvers, including

• Jacobi, Gauss-Seidel, polynomial, distributed relaxation;

• domain decomposition solvers;

• incomplete factorizations.

This list of solvers is not exhaustive. Instead, references for further information are provided
throughout the text. There are many excellent references for iterative methods, including [14].

Complete information on available capabilities and options can be found in §2.

11

1.2 Configuration and Build

IFPACK2 requires a C++11 compatible compiler for compilation. The minimum required ver-
sion of compilers are GCC (4.7.2 and later), Intel (13 and later), and clang (3.5 and later).

1.2.1 Dependencies

Table 1.1 enumerates the dependencies of IFPACK2. Certain dependencies are optional, whereas
others are required. Furthermore, IFPACK2’s tests depend on certain libraries that are not required
if you only want to link against the IFPACK2 library and do not want to compile its tests. Ad-
ditionally, some functionality in IFPACK2 may depend on other Trilinos packages (for instance,
AMESOS2) that may require additional dependencies. We refer to the documentation of those
packages for a full list of dependencies.

Dependency
Library Testing

Required Optional Required Optional

TEUCHOS × ×
TPETRA × ×
TPETRAKERNELS ×
AMESOS2 × ×
GALERI ×
XPETRA × ×
ZOLTAN2 × ×
THYRATPETRAADAPTERS ×
SHYLUBASKER × ×
SHYLUHTS × ×

MPI × ×

Table 1.1. IFPACK2’s required and optional dependencies, sub-
divided by whether a dependency is that of the IFPACK2 library
itself (Library), or of some IFPACK2 test (Testing).

AMESOS2 and SUPERLU are necessary if you want to use either a sparse direct solve or ILUTP
as a subdomain solve in processor-based domain decomposition. ZOLTAN2 and XPETRA are nec-
essary if you want to reorder a matrix (e.g., reverse Cuthill McKee).

12

1.2.2 Configuration

The preferred way to configure and build IFPACK2 is to do that outside of the source direc-
tory. Here we provide a sample configure script that will enable IFPACK2 and all of its optional
dependencies:

export TRILINOS_HOME=/path/to/your/Trilinos/source/directory

cmake -D BUILD_SHARED_LIBS:BOOL=ON \

-D CMAKE_BUILD_TYPE:STRING="RELEASE" \

-D CMAKE_CXX_FLAGS:STRING="-g" \

-D Trilinos_ENABLE_EXPLICIT_INSTANTIATION:BOOL=ON \

-D Trilinos_ENABLE_TESTS:BOOL=OFF \

-D Trilinos_ENABLE_EXAMPLES:BOOL=OFF \

-D Trilinos_ENABLE_Ifpack2:BOOL=ON \

-D Ifpack2_ENABLE_TESTS:STRING=ON \

-D Ifpack2_ENABLE_EXAMPLES:STRING=ON \

-D TPL_ENABLE_BLAS:BOOL=ON \

-D TPL_ENABLE_MPI:BOOL=ON \

${TRILINOS_HOME}

More configure examples can be found in Trilinos/sampleScripts. For more information on
configuring, see the TRILINOS Cmake Quickstart guide [1].

1.3 Interface to IFPACK2 methods

All IFPACK2 operators inherit from the base class Ifpack2::Preconditioner. This in turn
inherits from Tpetra::Operator. Thus, you may use an IFPACK2 operator anywhere that a
Tpetra::Operator works. For example, you may use IFPACK2 operators directly as precondi-
tioners in TRILINOS’ BELOS package of iterative solvers.

You may either create an IFPACK2 operator directly, by using the class and options that you
want, or by using Ifpack2::Factory. Some of IFPACK2 preconditioners only accept a Tpetra::
CrsMatrix instance as input, while others also may accept a Tpetra::RowMatrix (the base class
of Tpetra::CrsMatrix). They will decide at run time whether the input Tpetra::RowMatrix is
an instance of the right subclass.

Ifpack2::Preconditioner includes the following methods:

• initialize()

Performs all operations based on the graph of the matrix (without considering the numerical
values).

• compute()

Computes everything required to apply the preconditioner, using the matrix’s values.

13

• apply()

Applies or “solves with” the preconditioner.

Every time that initialize() is called, the object destroys all the previously allocated informa-
tion, and reinitializes the preconditioner. Every time compute() is called, the object recomputes
the actual values of the preconditioner.

An IFPACK2 preconditioner may also inherit from Ifpack2::CanChangeMatrix class in order
to express that users can change its matrix (the matrix that it preconditions) after construction using
a setMatrix method. Changing the matrix puts the preconditioner back in an “pre-initialized”
state. You must first call initialize(), then compute(), before you may call apply() on this
preconditioner. Depending on the implementation, it may be legal to set the matrix to null. In that
case, you may not call initialize() or compute() until you have subsequently set a nonnull
matrix.

Warning. If you are familiar with the IFPACK package [15], please be aware that the behaviour
of the IFPACK2 preconditioner is different from IFPACK. In IFPACK, the ApplyInverse() method
applies or “solves with” the preconditioner M−1, and the Apply() method “applies” the precon-
ditioner M. In IFPACK2, the apply() method applies or “solves with” the preconditioner M−1.
IFPACK2 has no method comparable to IFPACK’s Apply().

1.4 Example: IFPACK2 preconditioner within BELOS

The most commonly used scenario involving IFPACK2 is using one of its preconditioners pre-
conditioners inside an iterative linear solver. In TRILINOS, the BELOS package provides important
Krylov subspace methods (such as preconditioned CG and GMRES).

At this point, we assume that the reader is comfortable with TEUCHOS referenced-counted
pointers (RCPs) for memory management (an introduction to RCPs can be found in [3]) and the
Teuchos::ParameterList class [16].

First, we create an IFPACK2 preconditioner using a provided Teuchos::ParameterList

typedef Tpetra::CrsMatrix<Scalar, LocalOrdinal, GlobalOrdinal, Node>

Tpetra_Operator;

Teuchos::RCP<Tpetra_Operator> A;

// create A here ...

Teuchos::ParameterList paramList;

paramList.set("chebyshev: degree", 1);

paramList.set("chebyshev: min eigenvalue", 0.5);

paramList.set("chebyshev: max eigenvalue", 2.0);

// ...

Ifpack2::Factory factory;

14

RCP<Ifpack2::Ifpack2Preconditioner<> > ifpack2Preconditioner;

ifpack2Preconditioner = factory.create("CHEBYSHEV", A)

ifpack2Preconditioner->setParameters(paramList);

ifpack2Preconditioner->initialize();

ifpack2Preconditioner->compute();

Besides the linear operator A, we also need an initial guess vector for the solution X and a right
hand side vector B for solving a linear system.

typedef Tpetra::Map<LocalOrdinal, GlobalOrdinal, Node> Tpetra_Map;

typedef Tpetra::MultiVector<Scalar, LocalOrdinal, GlobalOrdinal, Node>

Tpetra_MultiVector;

Teuchos::RCP<const Tpetra_Map> map = A->getDomainMap();

// create initial vector

Teuchos::RCP<Tpetra_MultiVector> X =

Teuchos::rcp(new Tpetra_MultiVector(map, numrhs));

// create right-hand side

X->randomize();

Teuchos::RCP<Tpetra_MultiVector> B =

Teuchos::rcp(new Tpetra_MultiVector(map, numrhs));

A->apply(*X, *B);

X->putScalar(0.0);

To generate a dummy example, the above code first declares two vectors. Then, a right hand side
vector is calculated as the matrix-vector product of a random vector with the operator A. Finally,
an initial guess is initialized with zeros.

Then, one can define a Belos::LinearProblem object where the ifpack2Preconditioner

is used for left preconditioning.

typedef Belos::LinearProblem<Scalar, Tpetra_MultiVector, Tpetra_Operator>

Belos_LinearProblem;

Teuchos::RCP<Belos_LinearProblem> problem =

Teuchos::rcp(new Belos_LinearProblem(A, X, B));

problem->setLeftPrec(mueLuPreconditioner);

bool set = problem.setProblem();

Next, we set up a BELOS solver using some basic parameters.

Teuchos::RCP<Teuchos::ParameterList> belosList =

Teuchos::rcp(new Teuchos::ParameterList);

belosList->set("Block Size", 1);

belosList->set("Maximum Iterations", 100);

belosList->set("Convergence Tolerance", 1e-10);

15

belosList->set("Output Frequency", 1);

belosList->set("Verbosity", Belos::TimingDetails + Belos::FinalSummary);

Belos::SolverFactory<Scalar, Tpetra_MultiVector, Tpetra_Operator> solverFactory;

Teuchos::RCP<Belos::SolverManager<Scalar, Tpetra_MultiVector, Tpetra_Operator> >

solver = solverFactory.create("Block CG", belosList);

solver->setProblem(problem);

Finally, we solve the system.

Belos::ReturnType ret = solver.solve();

It is often more convenient to specify the parameters as part of an XML-formatted options file.
Look in the subdirectory Trilinos/packages/ifpack2/test/belos for examples of this.

This section is only meant to give a brief introduction on how to use IFPACK2 as a precon-
ditioner within the TRILINOS packages for iterative solvers. There are other, more complicated,
ways to use to work with IFPACK2. For more information on these topics, the reader may refer to
the examples and tests in the IFPACK2 source directory (Trilinos/packages/ifpack2).

16

Chapter 2

IFPACK2 options

In this section, we report the complete list of input parameters. Input parameters are passed to
IFPACK2 in a single Teuchos::ParameterList.

In some cases, the parameter types may depend on runtime template parameters. In such cases,
we will follow the conventions in Table 2.1.

MatrixType::local_ordinal_type local_ordinal

MatrixType::global_ordinal_type global_ordinal

MatrixType::scalar_type scalar

MatrixType::node_type node

Tpetra::Vector<scalar,local_ordinal,global_ordinal,node> vector

Tpetra::MultiVector<scalar,local_ordinal,global_ordinal,node> multi_vector

vector::mag_type magnitude

Table 2.1. Conventions for option types that depend on templates.

Note: if scalar is double, then magnitude is also double.

2.1 Point relaxation

Preconditioner type: “RELAXATION”.

IFPACK2 implements the following classical relaxation methods: Jacobi (with optional damp-
ing), Gauss-Seidel, Successive Over-Relaxation (SOR), symmetric version of Gauss-Seidel and
SOR. IFPACK2 calls both Gauss-Seidel and SOR ”Gauss-Seidel”. The algorithmic details can be
found in [14].

Besides the classical relaxation methods, IFPACK2 also implements l1 variants of Jacobi and
Gauss-Seidel methods proposed in [2], which lead to a better performance in parallel applications.

Note: if a user provides a Tpetra::BlockCrsMatrix, the point relaxation methods become block

17

relaxation methods, such as block Jacobi or block Gauss-Seidel.

The following parameters are used in the point relaxation methods:

"relaxation: type" [string] Relaxation method to use. Accepted val-
ues: “Jacobi”, “Gauss-Seidel”, “Symmetric Gauss-
Seidel”. Default: “Jacobi”.

"relaxation: sweeps" [int] Number of sweeps of the relaxation. De-
fault: 1.

"relaxation: damping factor" [scalar] The value of the damping factor ω for the
relaxation. Default: 1.0.

"relaxation: backward mode" [bool] Governs whether Gauss-Seidel is done in
forward-mode (false) or backward-mode (true).
Only valid for “Gauss-Seidel” type. Default: false.

"relaxation: use l1" [bool] Use the l1 variant of Jacobi or Gauss-Seidel.
Default: false.

"relaxation: l1 eta" [magnitude] η parameter for l1 variant of Gauss-
Seidel. Only used if "relaxation: use l1" is
true. Default: 1.5.

"relaxation: zero starting

solution"

[bool] Governs whether or not IFPACK2 uses existing
values in the left hand side vector. If true, IFPACK2
fill it with zeros before applying relaxation sweeps
which may make the first sweep more efficient. De-
fault: true.

"relaxation: fix tiny

diagonal entries"

[bool] If true, the compute() method will do extra
work (computation only, no MPI communication) to
fix diagonal entries. Specifically, the diagonal val-
ues with a magnitude smaller than the magnitude of
the threshold relaxation: min diagonal value

are increased to threshold for the diagonal inversion.
The matrix is not modified, instead the updated diag-
onal values are stored. If the threshold is zero, only
the diagonal entries that are exactly zero are replaced
with a small nonzero value (machine precision). De-
fault: false.

"relaxation: min diagonal

value"

[scalar] The threshold value used in "relaxation:

fix tiny diagonal entries". Only used if
"relaxation: fix tiny diagonal entries"

is true. Default: 0.0.

18

"relaxation: check diagonal

entries"

[bool] If true, the compute() method will do extra
work (both computation and communication) to count
diagonal entries that are zero, have negative real part,
or are small in magnitude. This information can be
later shown in the description. Default: false.

"relaxation: local smoothing

indices"

[Teuchos::ArrayRCP<local ordinal>] A given
method will only relax on the local indices listed in
the ArrayRCP, in the order that they are listed. This
can be used to reorder the relaxation, or to only relax
on a subset of ids. Default: empty.

2.2 Block relaxation

Preconditioner type: “BLOCK RELAXATION”.

IFPACK2 supports block relaxation methods. Each block corresponds to a set of degrees of
freedom within a local subdomain. The blocks can be non-overlapping or overlapping. Block
relaxation can be considered as domain decomposition within an MPI process, and should not be
confused with additive Schwarz preconditioners (see 2.5) which implement domain decomposition
across MPI processes.

There are several ways the blocks are constructed:

• Linear partitioning of unknowns

The unknowns are divided equally among a specified number of partitions L defined by
"partitioner: local parts". In other words, assuming number of unknowns n is di-
visible by L, unknown i will belong to block number biL/nc.

• Line partitioning of unknowns

The unknowns are grouped based on a geometric criteria which tries to identify degrees
of freedom that form an approximate geometric line. Current approach uses a local line
detection inspired by the work of Mavriplis [11] for convection-diffusion. IFPACK2 uses co-
ordinate information provided by "partitioner: coordinates" to pick ”close” points
if they are sufficiently far away from the ”far” points. It also makes sure the line can never
double back on itself.

These ”line” partitions were found to be very beneficent to problems on highly anisotropic
geometries such as ice-sheet simulations.

• User partitioning of unknowns

19

The unknowns are grouped according to a user provided partition. A user may provide a
non-overlapping partition "partitioner: map" or an overlapping one "partitioner:

parts".

A particular example of a smoother using this approach is a Vanka smoother [17], where a
user may in "partition: parts" pressure degrees of freedom, and request a overlap of
one thus constructing Vanka blocks.

The original partitioning may be further modified with "partitioner: overlap" parameter
which will use the local matrix graph to construct overlapping partitions.

The blocks are applied in the order they were constructed. This means that in the case of
overlap the entries in the solution vector relaxed by one block may later be overwritten by relaxing
another block.

The following parameters are used in the block relaxation methods:

"relaxation: type" See 2.1.

"relaxation: sweeps" See 2.1.

"relaxation: damping factor" See 2.1.

"relaxation: zero starting

solution"

See 2.1.

"relaxation: backward mode" See 2.1. Currently has no effect.

"partitioner: type" [string] The partitioner to use for defining the
blocks. This can be either “linear”, “line” or “user”.
Default: “linear”.

"partitioner: overlap" [int] The amount of overlap between partitions (0
corresponds to no overlap). Only valid for “Jacobi”
relaxation. Default: 0.

"partitioner: local parts" [int] Number of local partitions (1 corresponds to
one local partition, which means ”do not partition lo-
cally”). Only valid for “linear” partitioner type. De-
fault: 1.

"partitioner: map" [Teuchos::ArrayRCP<local ordinal>] An array
containing the partition number for each element. The
ith entry in the ArrayRCP is the part (block) number
that row i belongs to. Use this option if the parts
(blocks) do not overlap. Only valid for “user” par-
titioner type. Default: empty.

20

"partitioner: parts" [Teuchos::Array<Teuchos::ArrayRCP
<local ordinal>>] Use this option if the parts
(blocks) overlap. The ith entry in the Array is an
ArrayRCP that contains all the rows in part (block)
i. Only valid for “user” partitioner type. De-
fault: empty.

"partitioner: line detection

threshold"

[magnitude] Threshold used in line detection. If
the distance between two connected points i and j is
within the threshold times maximum distance of all
points connected to i, then point j is considered close
enough to line smooth. Only valid for “line” partition
type. Default: 0.0.

"partitioner: PDE equations" [int] Number of equations per node. Only valid for
“line” partition type. Default: 1.

"partitioner: coordinates" [Teuchos::RCP<multi vector>] Coordinates of lo-
cal nodes. Only valid for “line” partitioner type. De-
fault: null.

"partitioner: print level" [bool] If true, produce extra information about used
blocks. Default: false.

2.3 Chebyshev

Preconditioner type: “CHEBYSHEV”.

IFPACK2 implements a variant of Chebyshev iterative method following IFPACK’s implemen-
tation. IFPACK has a special-case modification of the eigenvalue bounds for the case where the
maximum eigenvalue estimate is close to one. Experiments show that the IFPACK imitation is
much less sensitive to the eigenvalue bounds than the textbook version.

IFPACK2 uses the diagonal of the matrix to precondition the linear system on the left. Diagonal
elements less than machine precision are replaced with machine precision.

IFPACK2 requires can take any matrix A but can only guarantee convergence for real valued
symmetric positive definite matrices.

The following parameters are used in the Chebyshev method:

"chebyshev: degree" [int] Degree of the Chebyshev polynomial, or
the number of iterations. This overrides param-
eters "relaxation: sweeps" and "smoother:

sweeps". Default: 1.

21

"relaxation: sweeps" Same as "chebyshev: degree", for compatibility
with IFPACK.

"smoother: sweeps" Same as "chebyshev: degree", for compatibility
with ML.

"chebyshev: max eigenvalue" [scalar|double] An upper bound of the ma-
trix eigenvalues. If not provided, the value
will be computed by power method (see parame-
ters "eigen-analysis: type" and "chebyshev:

eigenvalue max iterations"). Default: com-
puted.

"chebyshev: min eigenvalue" [scalar|double] A lower bound of the matrix eigen-
values. If not provided, IFPACK2 will provide an esti-
mate based on the maximum eigenvalue and the ratio.
Default: computed.

"chebyshev: ratio

eigenvalue"

[scalar|double] The ratio of the maximum and
minimum estimates of the matrix eigenvalues. De-
fault: 30.0.

"smoother: Chebyshev alpha" Same as "chebyshev: ratio eigenvalue", for
compatibility with ML.

"chebyshev: compute max

residual norm"

[bool] The apply call will optionally return the norm
of the residual. Default: false.

"eigen-analysis: type" [string] The algorithm for estimating the max
eigenvalue. Currently only supports power method
(”power-method” or ”power method”). The cost of
the procedure is roughly equal to several matrix-
vector multiplications. Default: ”power-method”.

"chebyshev: eigenvalue max

iterations"

[int] Number of iterations to be used in calculating
the estimate for the maximum eigenvalue, if it is not
provided by the user. Default: 10.

"eigen-analysis: iterations" Same as "chebyshev: eigenvalue max

iterations", for compatibility with ML.

"chebyshev: min diagonal

value"

[scalar] Values on the diagonal smaller than this
value are increased to this value for the diagonal in-
version. Default: 0.0.

"chebyshev: boost factor" [double] Factor used to increase the estimate of ma-
trix maximum eigenvalue to ensure the high-energy
modes are not magnified by a smoother. Default: 1.1.

22

"chebyshev: assume matrix

does not change"

[bool] Whether compute() should assume that
the matrix has not changed since the last call to
compute(). If true, compute() will not recom-
pute inverse diagonal or eigenvalue estimates. De-
fault: false.

"chebyshev: operator inv

diagonal"

[Teuchos::RCP<const vector>|

Teuchos::RCP<vector>|const vector*|

vector] If nonnull, a deep copy of this vector will
be used as the inverse diagonal of the matrix, instead
of computing it. Expert use only. Default: Teu-
chos::null.

"chebyshev: min diagonal

value"

[scalar] If any entry of the matrix diagonal is less
that this in magnitude, it will be replaced with this
value in the inverse diagonal used for left scaling. De-
fault: machine precision.

"chebyshev: zero starting

solution"

See "relaxation: zero starting solution".

2.4 Incomplete factorizations

2.4.1 ILU(k)

Preconditioner type: “RILUK”.

IFPACK2 implements a standard and modified (MILU) variants of the ILU(k) factorization [14].
In addition, it also provides an optional a priori modification of the diagonal entries of a matrix to
improve the stability of the factorization.

The following parameters are used in the ILU(k) method:

"fact: iluk level-of-fill" [int|global ordinal|magnitude|double] Level-
of-fill of the factorization. Default: 0.

"fact: relax value" [magnitude|double] MILU diagonal compensation
value. Entries dropped during factorization times this
factor are added to diagonal entries. Default: 0.0.

"fact: absolute threshold" [magnitude|double] Prior to the factorization, each
diagonal entry is updated by adding this value (with
the sign of the actual diagonal entry). Can be com-
bined with "fact: relative threshold". The
matrix remains unchanged. Default: 0.0.

23

"fact: relative threshold" [magnitude|double] Prior to the factorization, each
diagonal element is scaled by this factor (not includ-
ing contribution specified by "fact: absolute

threshold"). Can be combined with "fact:

absolute threshold". The matrix remains un-
changed. Default: 1.0.

2.4.2 ILUT

Preconditioner type: “ILUT”.

IFPACK2 implements a slightly modified variant of the standard ILU factorization with speci-
fied fill and drop tolerance ILUT(p,τ) [13]. The modifications follow the AZTECOO implemen-
tation. The main difference between the IFPACK2 implementation and the algorithm in [13] is the
definition of fact: ilut level-of-fill.

The following parameters are used in the ILUT method:

"fact: ilut level-of-fill" [int|magnitude|double] Maximum number of en-
tries to keep in each row of L and U . Each row of
L (U) will have at most d (level-of-fill−1)nnz(A)

2n e
nonzero entries, where nnz(A) is the number of
nonzero entries in the matrix, and n is the number of
rows. ILUT always keeps the diagonal entry in the
current row, regardless of the drop tolerance or fill
level. Note: This is different from the p in the classic
algorithm in [13]. Default: 1.

"fact: drop tolerance" [magnitude|double] A threshold for dropping en-
tries (τ in [13]). Default: 0.0.

"fact: absolute threshold" See 2.4.1.

"fact: relative threshold" See 2.4.1.

"fact: relax value" Currently has no effect. For backwards compatibility
only.

2.4.3 ILUTP

Preconditioner type: “AMESOS2”.

IFPACK2 implements a standard ILUTP factorization [14]. This is done through is through the

24

AMESOS2 interface to SuperLU [9]. We reproduce the AMESOS2 options here for convenience.
You should consider the AMESOS2 documentation to be the final authority.

The following parameters are used in the ILUTP method:

"ILU DropTol" [double] ILUT drop tolerance. Default: 1e-4.

"ILU FillFactor" [double] ILUT fill factor. Default: 10.0.

"ILU Norm" [string] Norm to be used in factorization. Ac-
cepted values: “ONE NORM”, “TWO NORM”, or
“INF NORM”. Default: “INF NORM”.

"ILU MILU" [string] Type of modified ILU to use. Ac-
cepted values: “SILU”, “SMILU 1”, “SMILU 2”, or
“SMILU 3”. Default: “SILU”.

2.5 Additive Schwarz

Preconditioner type: “SCHWARZ”.

IFPACK2 implements additive Schwarz domain decomposition with optional overlap. Each
subdomain corresponds to exactly one MPI process in the given matrix’s MPI communication. For
domain decomposition within an MPI process see 2.2.

One-level overlapping domain decomposition preconditioners use local solvers of Dirichlet
type. This means that the inverse of the local matrix (possibly with overlap) is applied to the
residual to be preconditioned. The preconditioner can be written as:

P−1
AS =

M

∑
i=1

PiA−1
i Ri,

where M is the number of subdomains (in this case, the number of (MPI) processes in the compu-
tation), Ri is an operator that restricts the global vector to the vector lying on subdomain i, Pi is the
prolongator operator, and Ai = RiAPi.

Constructing a Schwarz preconditioner requires defining two components.

Definition of the restriction and prolongation operators. Users may control how the data is
combined with existing data by setting "combine mode" parameter. Table 2.2 contains a list of
modes to combine overlapped entries. The default mode is “ZERO” which is equivalent to using a
restricted additive Schwarz [5] method.

Definition of a solver for subdomain linear system. Some preconditioners may benefit from
local modifications to the subdomain matrix. It can be filtered to eliminate singletons and/or re-
ordered. Reordering will often improve performance during incomplete factorization setup, and

25

http://trilinos.org/docs/dev/packages/amesos2/doc/html/group__amesos2__solver__parameters.html#superlu_parameters

Combine mode
name

Description

“ADD” Sum values into existing values
“ZERO” Replace old values with zero
“INSERT” Insert new values that don’t currently exist
“REPLACE” Replace existing values with new values
“ABSMAX” Replace old values with maximum of magnitudes of old and new values

Table 2.2. Combine mode descriptions.

improve the convergence. The matrix reordering algorithms specified in "schwarz: reordering

list" are provided by ZOLTAN2. At the present time, the only available reordering algorithm is
RCM (reverse Cuthill-McKee). Other orderings will be supported by the Zoltan2 package in the
future.

To solve linear systems involving Ai on each subdomain, a user can specify the inner solver
by setting "inner preconditioner name" parameter (or any of its aliases) which allows to use
any IFPACK2 preconditioner. These include but are not necessarily limited to the preconditioners
in Table 2.3.

Inner solver type Description

“DIAGONAL” Diagonal scaling
“RELAXATION” Point relaxation (see 2.1)
“BLOCK RELAXATION” Block relaxation (see 2.2)
“CHEBYSHEV” Chebyshev iteration (see 2.3)
“RILUK” ILU(k) (see 2.4.1)
“ILUT” ILUT (see 2.4.2)
“AMESOS2” AMESOS2’s interface to sparse direct solvers
“DENSE” or “LAPACK” LAPACK’s LU factorization for a dense representation of a

subdomain matrix
“CUSTOM” User provided inner solver

Table 2.3. Additive Schwarz solver preconditioner types.

The following parameters are used in the Schwarz method:

"schwarz: inner

preconditioner name"

[string] The name of the subdomain solver. De-
fault: none.

"inner preconditioner name" Same as "schwarz: inner preconditioner

name".

26

"schwarz: subdomain solver

name"

Same as "schwarz: inner preconditioner

name".

"subdomain solver name" Same as "schwarz: inner preconditioner

name".

"schwarz: inner

preconditioner parameters"

[Teuchos::ParameterList] Parameters for the sub-
domain solver. If not provided, the subdomain
solver will use its specific default parameters. De-
fault: empty.

"inner preconditioner

parameters"

Same as "schwarz: inner preconditioner

parameters".

"schwarz: subdomain solver

parameters"

Same as "schwarz: inner preconditioner

parameters".

"subdomain solver parameters" Same as "schwarz: inner preconditioner

parameters".

"schwarz: combine mode" [string] The rule for combining incoming data with
existing data in overlap regions. Accepted values: see
Table 2.2. Default: “ZERO”.

"schwarz: overlap level" [int] The level of overlap (0 corresponds to no over-
lap). Default: 0.

"schwarz: num iterations" [int] Number of iterations to perform. Default: 1.

"schwarz: use reordering" [bool] If true, local matrix is reordered before com-
puting subdomain solver. TRILINOS must have been
built with ZOLTAN2 and XPETRA enabled. De-
fault: false.

"schwarz: reordering list" [Teuchos::ParameterList] Specify options for
a ZOLTAN2 reordering algorithm to use. See
"order method". You should consider the ZOLTAN2
documentation to be the final authority. De-
fault: empty.

"order method" [string] Reordering algorithm. Accepted val-
ues: “rcm”, “minimum degree”, “natural”, “ran-
dom”, or “sorted degree”. Only used in "schwarz:

reordering list" sublist. Default: “rcm”.

"schwarz: zero starting

solution"

See "relaxation: zero starting solution".

"schwarz: filter singletons" [bool] If true, exclude rows with just a single entry
on the calling process. Default: false.

"schwarz: subdomain id" Currently has no effect.

27

http://trilinos.org/docs/dev/packages/zoltan2/doc/html/z2_parameters.html
http://trilinos.org/docs/dev/packages/zoltan2/doc/html/z2_parameters.html

"schwarz: compute condest" Currently has no effect. For backwards compatibility
only.

2.6 Hiptmair

IFPACK2 implements Hiptmair algorithm of [7]. The method operates on two spaces: a primary
space and an auxiliary space. This situation arises, for instance, when preconditioning Maxwell’s
equations discretized by edge elements. It is used in MUELU [12] “RefMaxwell” solver [4].

Hiptmair’s algorithm does not use Ifpack2::Factory interface for construction. Instead, a
user must explicitly call the constructor

Teuchos::RCP<Tpetra::CrsMatrix<> > A, Aaux, P;

// create A, Aaux, P here ...

Teuchos::ParameterList paramList;

paramList.set("hiptmair: smoother type 1", "CHEBYSHEV");

// ...

RCP<Ifpack2::Ifpack2Preconditioner<> > ifpack2Preconditioner =

Teuchos::rcp(new Ifpack2::Hiptmair(A, Aaux, P);

ifpack2Preconditioner->setParameters(paramList);

Here, A is a matrix in the primary space, Aaux is a matrix in auxiliary space, and P is a prolonga-
tor/restrictor between the two spaces.

The following parameters are used in the Hiptmair method:

"hiptmair: smoother type 1" [string] Smoother type for smoothing the primary
space. Default: ”CHEBYSHEV”.

"hiptmair: smoother list 1" [Teuchos::ParameterList] Smoother parameters
for smoothing the primary space. Default: empty.

"hiptmair: smoother type 2" [string] Smoother type for smoothing the auxiliary
space. Default: ”CHEBYSHEV”.

"hiptmair: smoother list 2" [Teuchos::ParameterList] Smoother parameters
for smoothing the auxiliary space. Default: empty.

"hiptmair: pre or post" [string] IFPACK2 always relaxes on the auxiliary
space. “pre” (“post”) means that it relaxes on the pri-
mary space before (after) the relaxation on the auxil-
iary space. “both” means that we do both “pre” and
“post”. Default: “both”.

"hiptmair: zero starting

solution"

See "relaxation: zero starting solution".

28

29

30

References

[1] Trilinos CMake Quickstart. http://trilinos.org/build_instructions.html, 2014.

[2] Allison H Baker, Robert D Falgout, Tzanio V Kolev, and Ulrike Meier Yang. Multigrid
smoothers for ultraparallel computing. SIAM Journal on Scientific Computing, 33(5):2864–
2887, 2011.

[3] Roscoe A. Bartlett. Teuchos::RCP beginners guide. Technical Report SAND2004-3268,
Sandia National Labs, 2010.

[4] Pavel B Bochev, Jonathan J Hu, Christopher M Siefert, and Raymond S Tuminaro. An alge-
braic multigrid approach based on a compatible gauge reformulation of Maxwell’s equations.
SIAM Journal on Scientific Computing, 31(1):557–583, 2008.

[5] Xiao-Chuan Cai and Marcus Sarkis. A restricted additive Schwarz preconditioner for general
sparse linear systems. SIAM Journal on Scientific Computing, 21(2):792–797, 1999.

[6] Michael A. Heroux and James M. Willenbring. A new overview of the Trilinos project.
Scientific Programming, 20(2):83–88, 2012.

[7] Ralf Hiptmair. Multigrid method for H(div) in three dimensions. Electron. Trans. Numer.
Anal, 6:133–152, 1997.

[8] Mark Hoemmen, Heidi Thornquist, Michael Heroux, and Michael Parks. Tpetra: next-
generation distributed linear algebra. http://trilinos.org/packages/tpetra, 2014.

[9] Xiaoye S. Li, James W. Demmel, John R. Gilbert, Laura Grigori, Meiyue Shao, and Ichitaro
Yamazaki. SuperLU Users’ Guide. 2011.

[10] Paul Lin, Matthew Bettencourt, Stefan Domino, Travis Fisher, Mark Hoemmen, Jonathan
Hu, Eric Phipps, Andrey Prokopenko, Sivasankaran Rajamanickam, Christopher Siefert,
and Stephen Kennon. Towards extreme-scale simulations for low Mach fluids with second-
generation Trilinos. Parallel Processing Letters, 24(04):1442005, 2014.

[11] Dimitri J Mavriplis. Directional agglomeration multigrid techniques for high-Reynolds-
number viscous flows. AIAA journal, 37(10):1222–1230, 1999.

[12] Andrey Prokopenko, Jonathan J. Hu, Tobias A. Wiesner, Christopher M. Siefert, and Ray-
mond S. Tuminaro. MueLu User’s Guide 1.0. Technical Report SAND2014-18874, Sandia
National Labs, 2014.

[13] Yousef Saad. ILUT: A dual threshold incomplete LU factorization. Numerical Linear Alge-
bra with Applications, 1(4):387–402, 1994.

31

http://trilinos.org/build_instructions.html
http://trilinos.org/packages/tpetra

[14] Yousef Saad. Iterative methods for sparse linear systems. SIAM, 2nd edition, 2003.

[15] M. Sala and M. Heroux. Robust algebraic preconditioners with IFPACK 3.0. Technical
Report SAND-0662, Sandia National Laboratories, 2005.

[16] Heidi Thornquist, Roscoe A. Bartlett, Mark Hoemmen, Christopher Baker, and Michael Her-
oux. Teuchos: Trilinos tools library. http://trilinos.org/packages/teuchos, 2014.

[17] S Pratap Vanka. Block-implicit multigrid solution of Navier-Stokes equations in primitive
variables. Journal of Computational Physics, 65(1):138–158, 1986.

32

http://trilinos.org/packages/teuchos

DISTRIBUTION:

1 MS 1320 Michael Heroux, 1426
1 MS 1318 Robert Hoekstra, 1423
1 MS 1318 Erik Strack, 1426
1 MS 1320 Mark Hoemmen, 1426
1 MS 1320 Alicia Klinvex, 1426
1 MS 1320 Paul Lin, 1426
1 MS 1318 Andrey Prokopenko, 1426
1 MS 1322 Christopher Siefert, 1443
1 MS 0899 Technical Library, 9536 (electronic copy)

33

DISTRIBUTION:

1 MS 9159 Jonathan Hu, 1426
1 MS 9159 Raymond Tuminaro, 1442
1 MS 0899 Technical Library, 8944 (electronic copy)

34

v1.39

	Getting Started
	Overview of Ifpack2
	Configuration and Build
	Dependencies
	Configuration

	Interface to Ifpack2 methods
	Example: Ifpack2 preconditioner within Belos

	Ifpack2 options
	Point relaxation
	Block relaxation
	Chebyshev
	Incomplete factorizations
	ILU(k)
	ILUT
	ILUTP

	Additive Schwarz
	Hiptmair

	References

